Atomic structure of a tryptophan-zipper pentamer
نویسندگان
چکیده
منابع مشابه
Atomic structure of a tryptophan-zipper pentamer.
Coiled-coil motifs are ubiquitous mediators of specific protein-protein interactions through the formation of interlocking hydrophobic seams between alpha-helical chains. Residues that form these seams occur at the first (a) and fourth (d) positions of a characteristic 7-aa repeat and are primarily aliphatic. The potential of aromatic residues to promote helix association in a coiled coil was e...
متن کامل- Atomic Spectra Atomic Structure
T HE present edition of this work contains a number of corrections and additions; Birge's new set of fundamental constants has been adopted throughout, and various tables, especially the table of ionization potentials, have been brought up to date. The author is indebted to Professor J. W. Ellis of the University of California at Los Angeles for a list of errors and corrections ; several of the...
متن کاملEvaluating force field accuracy with long-time simulations of a β-hairpin tryptophan zipper peptide.
We have combined graphics processing unit-accelerated all-atom molecular dynamics with parallel tempering to explore the folding properties of small peptides in implicit solvent on the time scale of microseconds. We applied this methodology to the synthetic β-hairpin, trpzip2, and one of its sequence variants, W2W9. Each simulation consisted of over 8 μs of aggregated virtual time. Several meas...
متن کاملA novel model of clinical reasoning: Cognitive zipper model
Introduction: Clinical reasoning is a vital aspect of physiciancompetence. It has been the subject of academic research fordecades, and various models of clinical reasoning have beenproposed. The aim of the present study was to develop a theoreticalmodel of clinical reasoning.Methods: To conduct our study, we applied the process of theorysynthesis in accordan...
متن کاملAn engineered tryptophan zipper-type peptide as a molecular recognition scaffold.
In an effort to develop a structured peptide scaffold that lacks a disulfide bond and is thus suitable for molecular recognition applications in the reducing environment of the cytosol, we investigated engineered versions of the trpzip class of beta-hairpin peptides. We have previously shown that even most highly folded members of the trpzip class (i.e. the 16mer peptide HP5W4) are substantiall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2004
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0405319101